Work Package/Activity: D-FED 3.1.7 - Understanding the multiple dimensions of prediction of concepts in social and biomedical science questionnaires

Authors:

Suparna De (Work Package/Activity Lead) Jon Johnson (Work Package/Activity Co-Lead) Jenny Li (Developer) Harry Moss (Developer) Sanaz Jabbari (Analyst)

### Introduction

The CLOSER Discovery (Discovery, 2021) initiative provides metadata to support the emerging needs of data and variable-level discovery for the UK's longitudinal studies. It aims to develop an ecosystem to support the long-term viability of producing high granularity metadata that captures the data and survey data collection lifecycle.

The content of the surveys in these longitudinal studies are in the form of PDF questionnaires with different semantically distinct elements (question text, conditions, instructions etc.) that are captured within the DDI-Lifecycle standard schema. The application of common ontologies to a data collection is a significant investment to aid discovery and uptake of data for secondary data analysis. As data scales and ontologies develop, this is a major burden on providing ease of entry to using data investments. Existing efforts within CLOSER Discovery have involved manual and semi-automated tagging of question items to the CLOSER ontology, which have been utilised by the RCNIC-funded project 'Automated classification of social science questions' as training data to explore machine learning (ML) algorithms for the automated tagging of question items to existing thesauri.

This work package on 'Understanding the multiple dimensions of prediction of concepts in social and biomedical science questionnaires' extends the scope of the research tackled in the RCNIC project to:

- 1. dive deeper into questions related to the size and quality of the training data and how this affects the performance of the designed ML models,
- assess the performance of the trained ML models for automated tagging of question texts with the top-level concept topics (14 in number) from existing thesauri such as European Language Social Science Thesaurus (ELSST) in 'inference mode', i.e. with new unseen questionnaires (that were not part of the training and validation set)
- 3. investigate new ML models (such as hierarchical approaches) for tagging question texts (and response domains) with the 120 second-level topics from ELSST.

### Machine Learning Pipeline

The project has developed a ML pipeline, which enables running a large number of combinations of ML models and optimisations, different combinations of data through to the output measurement metrics.

Git is used for version control of the underlying code used to pre-process input data, generate features for training from the data and for model training and evaluation. Additionally, text outputs of experiments and basic plots are versioned with Git. In this structure, each broad model family occupies a branch, with individual experiments represented by a directory containing output files following model training and evaluation.

The ML pipeline relies upon DVC (Kuprieiev, 2021) to perform both dataset versioning and MLFlow for experiment tracking. In this context, an experiment refers to the model training process: from the choice of input parameters to the performance of the trained model on validation data according to several metrics of interest, such as accuracy, precision, recall, f1-score and the area under the receiver operating characteristic curve, referred to here as AUC score and ROC curve. Datasets versioned by DVC are referenced in the version-controlled codebase, managed by Git, and transferred via Secure Shell (SSH) to remote storage on the University College London (UCL) Research Data Storage Service (UCL, 2021). Full details of the ML pipeline design and working are documented in (De et al., 2022).

### Work Package Deliverables

1. Concept prediction - understanding different predictions rate by category

Concept prediction for the question texts for the 14 top-level topics was investigated in the RCNIC project. The problem was cast as a classification problem using supervised learning. Four broad model architectures were considered and performance compared:

- Multinomial naïve Bayes (MNB) model selected to determine a performance baseline against which other models with a greater number of parameters and level of complexity are compared.
- Long short term memory (LSTM) model implementation of a deep neural network model architecture, particularly suited to processing sequential data by extending the architecture of recurrent neural networks (RNNs).
- Universal Language Model Fine-tuning for Text Classification (ULMFit; Howard and Ruder, 2018) LSTM enhancement with a language model pretrained on Wikitext-103 (Merity et al., 2017b), a general English language corpus containing over 100 million words extracted from quality-assured Wikipedia articles. ULMFit utilises a transfer learning approach, with the intention that the weights of this language model be *fine-tuned* on the corpus of training data.
- BERT (Bidirectional Encoder Representations from Transformers; Devlin et al. 2018) class of models based on the *transformer*, using *self-attention* to adaptively weight sections of input data by significance.

After assessing performance using the baseline Multinomial naive Bayes classifier, the performance of three neural network architectures, described above, was assessed in comparison. The performance of all three neural network architectures was assessed through a hyperparameter tuning exercise in which a grid of hyperparameters was generated. In this case, hyperparameters considered were learning rate, batch size, metadata addition and optimiser. In turn, experiments were generated

by sampling from the grid of hyperparameters, enabling a set of optimal hyperparameters to be determined for each model.

In addition to hyperparameter optimisation, several experiments were conducted to investigate the addition of questionnaire metadata into the features used for model training. An initial approach looked at concatenating the question literal string (an individual sample in the original approach) with the question response string. After observing improved performance with question-reponse concatenation, questionnaire instrument name and questionnaire section heading were considered as additional candidates for inclusion in training features. Through concatenation with the question literal string, both metadata additions yielded increased model performance, with the section heading metadata maximally improving performance.

For all models, the performance metric of interest was chosen to be the so-called F1-score, the harmonic mean of precision and recall, where

$$F_1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$
 (1)

as shown in equation 1. For aggregate measures, a simple mean F1 score calculated from the F1 score of all classes is provided by the "Macro average" entry in tables 1-4. A weighted average, taking into account the number of samples in each category, is also given and is the preferred aggregate measure for model performance measure and model comparison.

Figure 1 shows the performance via weighted average f1-score of the various models with questionresponse concatenation and the addition of section heading metadata for the individual top-level topics. The topic of 'life events' is clearly distinguishable from the rest of the topics as having tightly grouped f1-scores at high values in all models. This is followed by 'health behaviour', 'Employment and income', 'Mental health and mental processes', 'Physical health', which also get good performance, particularly from the BERT and ULMFit models. Tables 1 to 4 show the f1-scores of the top-level concept classification under the "14-class f1-score" heading.

In aggregate and when considered on a class-by-class basis, ULMFit (with the combination of hyperparameters and metadata chosen here) is shown to have the greatest performance by f1-score. This is closely followed by BERT base uncased, although this has a greater variability in performance across classes. Of the three neural network architectures, our "Simple LSTM" model consisting of an LSTM cell, a dropout layer and a linear layer is considered to be the simplest implementation of all three, although it outperforms or comes close to the performance of BERT in several classes. All of the neural network-based models outperform the baseline Multinomial naive Bayes, justifying to some degree the greater computational effort required to train the models.



#### Per-class F1 score for models considered

Fig.1. Per-class f1-score for each considered model. All models are trained with question-response concatenation and the inclusion of section heading metadata, as these were observed to produce the most performant models in each case.

All model architectures were then trained to classify questions as one of up to 100 second-level topics from the ELSST ontology. The second-level topic classification experiment required a separate preprocessing stage to generate a training dataset with extracted second level topic labels from the 5digit numerical representation of the question topic, where the first 3 represent the top-level concept and the last two the second-level concept. In the absence of a 5-digit numerical representation, the top-level 3-digit representation was used. Classes containing 5 or fewer examples were discarded.

Results for the second-level concept are provided, alongside the counterpart top-level result, for each model in tables 1-4. Figures 2 to 5 visually represent the per-class f1-score for both the top-level 14-class problem and the second-level 100-class problem. In all cases, the model variant including section heading metadata in training features was found to yield the highest aggregate F1 score.

Table 1: Second level per-class and aggregate f1-scores (in bold) for the BERT\_base\_uncased model trained with question-response concatenation and the addition of section heading metadata. Note that the 100-class categorisation model includes the "COVID-19" and "Omics" classes, which are not shown here.

|                           | 100-class | 100-class |         | 14-class | 14-class - | dataset |
|---------------------------|-----------|-----------|---------|----------|------------|---------|
| Category                  | CODE      | f1-score  | support | CODE     | f1-score   | size    |
| Place of birth            | 10101     | 0.889     | 15      | 101      | 0.814      | 203     |
| Gender                    | 10102     | 0.710     | 18      | 101      | 0.814      | 203     |
| Ethnic group              | 10103     | 0.977     | 21      | 101      | 0.814      | 203     |
| Language(s) spoken        | 10104     | 0.947     | 10      | 101      | 0.814      | 203     |
| Location                  | 10106     | 0.757     | 21      | 101      | 0.814      | 203     |
| Age                       | 10107     | 0.313     | 20      | 101      | 0.814      | 203     |
| Housing                   | 10201     | 0.785     | 137     | 102      | 0.871      | 355     |
| Neighbourhood             | 10202     | 0.881     | 43      | 102      | 0.871      | 355     |
| Travel and transport      | 10203     | 0.879     | 64      | 102      | 0.871      | 355     |
| Environmental exposure    | 10204     | 0.840     | 77      | 102      | 0.871      | 355     |
| Cardiovascular system     | 10301     | 0.761     | 83      | 103      | 0.906      | 1372    |
| Musculoskeletal system    | 10302     | 0.714     | 81      | 103      | 0.906      | 1372    |
| Nervous system            | 10304     | 0.624     | 46      | 103      | 0.906      | 1372    |
| Digestive system          | 10305     | 0.724     | 60      | 103      | 0.906      | 1372    |
| Urogenital system         | 10306     | 0.796     | 52      | 103      | 0.906      | 1372    |
| Endocrine system          | 10307     | 0.800     | 16      | 103      | 0.906      | 1372    |
| Hemic and immune systems  | 10308     | 0.625     | 10      | 103      | 0.906      | 1372    |
| Hearing, vision, speech   | 10309     | 0.852     | 137     | 103      | 0.906      | 1372    |
| Oral/dental health        | 10310     | 0.822     | 52      | 103      | 0.906      | 1372    |
| Congenital malformations  | 10312     | 0.667     | 10      | 103      | 0.906      | 1372    |
| Cancer                    | 10313     | 0.000     | 4       | 103      | 0.906      | 1372    |
| Mortality                 | 10314     | 0.519     | 17      | 103      | 0.906      | 1372    |
| Women's health            | 10316     | 0.787     | 44      | 103      | 0.906      | 1372    |
| Accidents and injuries    | 10317     | 0.920     | 83      | 103      | 0.906      | 1372    |
| Allergies                 | 10318     | 0.853     | 70      | 103      | 0.906      | 1372    |
| Infections                | 10319     | 0.882     | 34      | 103      | 0.906      | 1372    |
| Anthropometry             | 10320     | 0.879     | 100     | 103      | 0.906      | 1372    |
| Physical characteristics  | 10321     | 0.831     | 41      | 103      | 0.906      | 1372    |
| Physical functioning      | 10322     | 0.686     | 54      | 103      | 0.906      | 1372    |
| General health            | 10323     | 0.462     | 138     | 103      | 0.906      | 1372    |
| Mental disorders          | 10401     | 0.623     | 32      | 104      | 0.905      | 942     |
| Personality   Temperament | 10402     | 0.803     | 238     | 104      | 0.905      | 942     |
| Wellbeing                 | 10403     | 0.783     | 51      | 104      | 0.905      | 942     |
| Emotions                  | 10404     | 0.612     | 47      | 104      | 0.905      | 942     |
| Cognitive function        | 10405     | 0.685     | 41      | 104      | 0.905      | 942     |

| Health services utilisation                                                                                                                                                                                                                                                                                      | 10501                                                                                                                                                 | 0.491                                                                                                                                                 | 64                                                                                                                     | 105                                                                                                                                                                                                             | 0.734                                                                                                                                                          | 251                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Hospital admissions                                                                                                                                                                                                                                                                                              | 10502                                                                                                                                                 | 0.619                                                                                                                                                 | 72                                                                                                                     | 105                                                                                                                                                                                                             | 0.734                                                                                                                                                          | 251                                                                |
| Immunisations                                                                                                                                                                                                                                                                                                    | 10503                                                                                                                                                 | 0.526                                                                                                                                                 | 10                                                                                                                     | 105                                                                                                                                                                                                             | 0.734                                                                                                                                                          | 251                                                                |
| Medications                                                                                                                                                                                                                                                                                                      | 10504                                                                                                                                                 | 0.743                                                                                                                                                 | 38                                                                                                                     | 105                                                                                                                                                                                                             | 0.734                                                                                                                                                          | 251                                                                |
| Complementary therapies                                                                                                                                                                                                                                                                                          | 10505                                                                                                                                                 | 0.952                                                                                                                                                 | 11                                                                                                                     | 105                                                                                                                                                                                                             | 0.734                                                                                                                                                          | 251                                                                |
| Diet and nutrition                                                                                                                                                                                                                                                                                               | 10601                                                                                                                                                 | 0.932                                                                                                                                                 | 256                                                                                                                    | 106                                                                                                                                                                                                             | 0.923                                                                                                                                                          | 542                                                                |
| Physical activity                                                                                                                                                                                                                                                                                                | 10602                                                                                                                                                 | 0.741                                                                                                                                                 | 56                                                                                                                     | 106                                                                                                                                                                                                             | 0.923                                                                                                                                                          | 542                                                                |
| Alcohol consumption                                                                                                                                                                                                                                                                                              | 10605                                                                                                                                                 | 0.959                                                                                                                                                 | 84                                                                                                                     | 106                                                                                                                                                                                                             | 0.923                                                                                                                                                          | 542                                                                |
| Substance abuse                                                                                                                                                                                                                                                                                                  | 10606                                                                                                                                                 | 0.981                                                                                                                                                 | 52                                                                                                                     | 106                                                                                                                                                                                                             | 0.923                                                                                                                                                          | 542                                                                |
| Criminal behaviour                                                                                                                                                                                                                                                                                               | 10608                                                                                                                                                 | 0.750                                                                                                                                                 | 5                                                                                                                      | 106                                                                                                                                                                                                             | 0.923                                                                                                                                                          | 542                                                                |
| Home life                                                                                                                                                                                                                                                                                                        | 10701                                                                                                                                                 | 0.737                                                                                                                                                 | 78                                                                                                                     | 107                                                                                                                                                                                                             | 0.865                                                                                                                                                          | 823                                                                |
| Household composition                                                                                                                                                                                                                                                                                            | 10702                                                                                                                                                 | 0.708                                                                                                                                                 | 83                                                                                                                     | 107                                                                                                                                                                                                             | 0.865                                                                                                                                                          | 823                                                                |
| Marital status                                                                                                                                                                                                                                                                                                   | 10703                                                                                                                                                 | 0.769                                                                                                                                                 | 67                                                                                                                     | 107                                                                                                                                                                                                             | 0.865                                                                                                                                                          | 823                                                                |
| Family members and relations                                                                                                                                                                                                                                                                                     | 10704                                                                                                                                                 | 0.682                                                                                                                                                 | 152                                                                                                                    | 107                                                                                                                                                                                                             | 0.865                                                                                                                                                          | 823                                                                |
| Friends                                                                                                                                                                                                                                                                                                          | 10705                                                                                                                                                 | 0.667                                                                                                                                                 | 29                                                                                                                     | 107                                                                                                                                                                                                             | 0.865                                                                                                                                                          | 823                                                                |
| Childcare                                                                                                                                                                                                                                                                                                        | 10706                                                                                                                                                 | 0.717                                                                                                                                                 | 27                                                                                                                     | 107                                                                                                                                                                                                             | 0.865                                                                                                                                                          | 823                                                                |
| Child welfare                                                                                                                                                                                                                                                                                                    | 10707                                                                                                                                                 | 0.000                                                                                                                                                 | 9                                                                                                                      | 107                                                                                                                                                                                                             | 0.865                                                                                                                                                          | 823                                                                |
| Social support                                                                                                                                                                                                                                                                                                   | 10708                                                                                                                                                 | 0.775                                                                                                                                                 | 104                                                                                                                    | 107                                                                                                                                                                                                             | 0.865                                                                                                                                                          | 823                                                                |
| Leisure activities                                                                                                                                                                                                                                                                                               | 10709                                                                                                                                                 | 0.790                                                                                                                                                 | 93                                                                                                                     | 107                                                                                                                                                                                                             | 0.865                                                                                                                                                          | 823                                                                |
| Technology                                                                                                                                                                                                                                                                                                       | 10711                                                                                                                                                 | 0.828                                                                                                                                                 | 17                                                                                                                     | 107                                                                                                                                                                                                             | 0.865                                                                                                                                                          | 823                                                                |
| Qualifications                                                                                                                                                                                                                                                                                                   | 10801                                                                                                                                                 | 0.904                                                                                                                                                 | 95                                                                                                                     | 108                                                                                                                                                                                                             | 0.869                                                                                                                                                          | 617                                                                |
| Further education   Higher                                                                                                                                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                       |                                                                                                                        |                                                                                                                                                                                                                 |                                                                                                                                                                |                                                                    |
| education                                                                                                                                                                                                                                                                                                        | 10803                                                                                                                                                 | 0.605                                                                                                                                                 | 38                                                                                                                     | 108                                                                                                                                                                                                             | 0.869                                                                                                                                                          | 617                                                                |
| Training                                                                                                                                                                                                                                                                                                         | 10804                                                                                                                                                 | 0.706                                                                                                                                                 | 25                                                                                                                     | 108                                                                                                                                                                                                             | 0.869                                                                                                                                                          | 617                                                                |
| Basic skills                                                                                                                                                                                                                                                                                                     | 10805                                                                                                                                                 | 0.797                                                                                                                                                 | 57                                                                                                                     | 108                                                                                                                                                                                                             | 0.869                                                                                                                                                          | 617                                                                |
| Adult education                                                                                                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                                                                                                       |                                                                                                                        |                                                                                                                                                                                                                 |                                                                                                                                                                |                                                                    |
|                                                                                                                                                                                                                                                                                                                  | 10806                                                                                                                                                 | 0.000                                                                                                                                                 | 7                                                                                                                      | 108                                                                                                                                                                                                             | 0.869                                                                                                                                                          | 617                                                                |
| Learning difficulties                                                                                                                                                                                                                                                                                            | 10806<br>10807                                                                                                                                        | 0.000<br>0.577                                                                                                                                        | 7<br>28                                                                                                                | 108<br>108                                                                                                                                                                                                      | 0.869<br>0.869                                                                                                                                                 | 617<br>617                                                         |
| Learning difficulties<br>Pre-school                                                                                                                                                                                                                                                                              | 10806<br>10807<br>10808                                                                                                                               | 0.000<br>0.577<br>0.667                                                                                                                               | 7<br>28<br>6                                                                                                           | 108<br>108<br>108                                                                                                                                                                                               | 0.869<br>0.869<br>0.869                                                                                                                                        | 617<br>617<br>617                                                  |
| Learning difficulties<br>Pre-school<br>Cognitive skills                                                                                                                                                                                                                                                          | 10806<br>10807<br>10808<br>10810                                                                                                                      | 0.000<br>0.577<br>0.667<br>0.759                                                                                                                      | 7<br>28<br>6<br>17                                                                                                     | 108<br>108<br>108<br>108                                                                                                                                                                                        | 0.869<br>0.869<br>0.869<br>0.869                                                                                                                               | 617<br>617<br>617<br>617                                           |
| Learning difficulties<br>Pre-school<br>Cognitive skills<br>Non cognitive skills                                                                                                                                                                                                                                  | 10806<br>10807<br>10808<br>10810<br>10811                                                                                                             | 0.000<br>0.577<br>0.667<br>0.759<br>0.000                                                                                                             | 7<br>28<br>6<br>17<br>5                                                                                                | 108<br>108<br>108<br>108<br>108                                                                                                                                                                                 | 0.869<br>0.869<br>0.869<br>0.869<br>0.869                                                                                                                      | 617<br>617<br>617<br>617<br>617                                    |
| Learning difficulties<br>Pre-school<br>Cognitive skills<br>Non cognitive skills<br>Education aspirations                                                                                                                                                                                                         | 10806<br>10807<br>10808<br>10810<br>10811<br>10813                                                                                                    | 0.000<br>0.577<br>0.667<br>0.759<br>0.000<br>0.522                                                                                                    | 7<br>28<br>6<br>17<br>5<br>15                                                                                          | 108<br>108<br>108<br>108<br>108<br>108                                                                                                                                                                          | 0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869                                                                                                             | 617<br>617<br>617<br>617<br>617<br>617                             |
| Learning difficulties<br>Pre-school<br>Cognitive skills<br>Non cognitive skills<br>Education aspirations<br>Primary schooling                                                                                                                                                                                    | 10806<br>10807<br>10808<br>10810<br>10811<br>10813<br>10815                                                                                           | 0.000<br>0.577<br>0.667<br>0.759<br>0.000<br>0.522<br>0.780                                                                                           | 7<br>28<br>6<br>17<br>5<br>15<br>21                                                                                    | 108<br>108<br>108<br>108<br>108<br>108<br>108                                                                                                                                                                   | 0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869                                                                                                    | 617<br>617<br>617<br>617<br>617<br>617<br>617                      |
| Learning difficulties<br>Pre-school<br>Cognitive skills<br>Non cognitive skills<br>Education aspirations<br>Primary schooling<br>Occupation   Employment                                                                                                                                                         | 10806<br>10807<br>10808<br>10810<br>10811<br>10813<br>10815<br>10901                                                                                  | 0.000<br>0.577<br>0.667<br>0.759<br>0.000<br>0.522<br>0.780<br>0.891                                                                                  | 7<br>28<br>6<br>17<br>5<br>15<br>21<br>385                                                                             | 108<br>108<br>108<br>108<br>108<br>108<br>108<br>109                                                                                                                                                            | 0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.903                                                                                  | 617<br>617<br>617<br>617<br>617<br>617<br>617<br>617<br>711        |
| Learning difficulties<br>Pre-school<br>Cognitive skills<br>Non cognitive skills<br>Education aspirations<br>Primary schooling<br>Occupation   Employment<br>Social classification                                                                                                                                | 10806<br>10807<br>10808<br>10810<br>10811<br>10813<br>10815<br>10901<br>10902                                                                         | 0.000<br>0.577<br>0.667<br>0.759<br>0.000<br>0.522<br>0.780<br>0.891<br>0.400                                                                         | 7<br>28<br>6<br>17<br>5<br>15<br>21<br>385<br>15                                                                       | 108<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>109<br>109                                                                                                                                              | 0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.903<br>0.903                                                                                  | 617<br>617<br>617<br>617<br>617<br>617<br>617<br>711<br>711        |
| Learning difficulties<br>Pre-school<br>Cognitive skills<br>Non cognitive skills<br>Education aspirations<br>Primary schooling<br>Occupation   Employment<br>Social classification<br>Income                                                                                                                      | 10806<br>10807<br>10808<br>10810<br>10811<br>10813<br>10815<br>10901<br>10902<br>10903                                                                | 0.000<br>0.577<br>0.667<br>0.759<br>0.000<br>0.522<br>0.780<br>0.891<br>0.400<br>0.843                                                                | 7<br>28<br>6<br>17<br>5<br>15<br>21<br>385<br>15<br>62                                                                 | 108<br>108<br>108<br>108<br>108<br>108<br>108<br>109<br>109<br>109                                                                                                                                              | 0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.903<br>0.903<br>0.903                                                                         | 617<br>617<br>617<br>617<br>617<br>617<br>617<br>711<br>711<br>711 |
| Learning difficulties<br>Pre-school<br>Cognitive skills<br>Non cognitive skills<br>Education aspirations<br>Primary schooling<br>Occupation   Employment<br>Social classification<br>Income<br>Finances                                                                                                          | 10806<br>10807<br>10808<br>10810<br>10811<br>10813<br>10815<br>10901<br>10902<br>10903<br>10904                                                       | 0.000<br>0.577<br>0.667<br>0.759<br>0.000<br>0.522<br>0.780<br>0.891<br>0.400<br>0.843<br>0.793                                                       | 7<br>28<br>6<br>17<br>5<br>15<br>21<br>385<br>15<br>62<br>57                                                           | 108<br>108<br>108<br>108<br>108<br>108<br>108<br>109<br>109<br>109<br>109                                                                                                                                       | 0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.903<br>0.903<br>0.903<br>0.903                                                                         | 617<br>617<br>617<br>617<br>617<br>617<br>617<br>711<br>711<br>711 |
| Learning difficulties<br>Pre-school<br>Cognitive skills<br>Non cognitive skills<br>Education aspirations<br>Primary schooling<br>Occupation   Employment<br>Social classification<br>Income<br>Finances<br>Assets                                                                                                | 10806<br>10807<br>10808<br>10810<br>10811<br>10813<br>10815<br>10901<br>10902<br>10903<br>10904<br>10905                                              | 0.000<br>0.577<br>0.667<br>0.759<br>0.000<br>0.522<br>0.780<br>0.891<br>0.891<br>0.843<br>0.793<br>0.333                                              | 7<br>28<br>6<br>17<br>5<br>15<br>21<br>385<br>15<br>62<br>57<br>5                                                      | 108<br>108<br>108<br>108<br>108<br>108<br>108<br>109<br>109<br>109<br>109                                                                                                                                       | 0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.903<br>0.903<br>0.903<br>0.903                                                                | 617<br>617<br>617<br>617<br>617<br>617<br>617<br>711<br>711<br>711 |
| Learning difficulties<br>Pre-school<br>Cognitive skills<br>Non cognitive skills<br>Education aspirations<br>Primary schooling<br>Occupation   Employment<br>Social classification<br>Income<br>Finances<br>Assets<br>Consumption   Expenditure                                                                   | 10806<br>10807<br>10808<br>10810<br>10811<br>10813<br>10815<br>10901<br>10902<br>10903<br>10904<br>10905<br>10906                                     | 0.000<br>0.577<br>0.667<br>0.759<br>0.000<br>0.522<br>0.780<br>0.891<br>0.400<br>0.843<br>0.793<br>0.333<br>0.711                                     | 7<br>28<br>6<br>17<br>5<br>15<br>21<br>385<br>15<br>62<br>57<br>5<br>5<br>23                                           | 108<br>108<br>108<br>108<br>108<br>108<br>108<br>109<br>109<br>109<br>109<br>109                                                                                                                                | 0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903                                                       | 617<br>617<br>617<br>617<br>617<br>617<br>617<br>711<br>711<br>711 |
| Learning difficulties<br>Pre-school<br>Cognitive skills<br>Non cognitive skills<br>Education aspirations<br>Primary schooling<br>Occupation   Employment<br>Social classification<br>Income<br>Finances<br>Assets<br>Consumption   Expenditure<br>Pensions                                                       | 10806<br>10807<br>10808<br>10810<br>10811<br>10813<br>10815<br>10901<br>10902<br>10903<br>10904<br>10905<br>10906<br>10907                            | 0.000<br>0.577<br>0.667<br>0.759<br>0.000<br>0.522<br>0.780<br>0.891<br>0.400<br>0.843<br>0.793<br>0.333<br>0.711<br>0.000                            | 7<br>28<br>6<br>17<br>5<br>15<br>21<br>385<br>15<br>62<br>57<br>5<br>5<br>23<br>2                                      | 108   108   108   108   108   108   109   109   109   109   109   109   109   109   109   109   109   109   109   109                                                                                           | 0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903                                              | 617<br>617<br>617<br>617<br>617<br>617<br>617<br>711<br>711        |
| Learning difficulties<br>Pre-school<br>Cognitive skills<br>Non cognitive skills<br>Education aspirations<br>Primary schooling<br>Occupation   Employment<br>Social classification<br>Income<br>Finances<br>Assets<br>Consumption   Expenditure<br>Pensions<br>Benefits   Welfare                                 | 10806<br>10807<br>10808<br>10810<br>10811<br>10813<br>10815<br>10901<br>10902<br>10903<br>10904<br>10905<br>10906<br>10907<br>10908                   | 0.000<br>0.577<br>0.667<br>0.759<br>0.000<br>0.522<br>0.780<br>0.891<br>0.400<br>0.843<br>0.793<br>0.333<br>0.711<br>0.000<br>0.833                   | 7<br>28<br>6<br>17<br>5<br>15<br>21<br>385<br>15<br>62<br>57<br>5<br>5<br>23<br>23<br>2<br>13                          | 108<br>108<br>108<br>108<br>108<br>108<br>108<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109                                                                                                           | 0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903                                     | 617<br>617<br>617<br>617<br>617<br>617<br>711<br>711               |
| Learning difficulties<br>Pre-school<br>Cognitive skills<br>Non cognitive skills<br>Education aspirations<br>Primary schooling<br>Occupation   Employment<br>Social classification<br>Income<br>Finances<br>Assets<br>Consumption   Expenditure<br>Pensions<br>Benefits   Welfare<br>Social attitudes             | 10806<br>10807<br>10808<br>10810<br>10811<br>10813<br>10815<br>10901<br>10902<br>10903<br>10904<br>10905<br>10906<br>10907<br>10908<br>11001          | 0.000<br>0.577<br>0.667<br>0.759<br>0.000<br>0.522<br>0.780<br>0.891<br>0.400<br>0.843<br>0.793<br>0.333<br>0.711<br>0.000<br>0.833<br>0.750          | 7<br>28<br>6<br>17<br>5<br>15<br>21<br>385<br>15<br>62<br>57<br>5<br>5<br>23<br>2<br>2<br>3<br>2<br>13<br>5            | 108   108   108   108   108   108   108   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109 | 0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903                   | 617<br>617<br>617<br>617<br>617<br>617<br>711<br>711               |
| Learning difficulties<br>Pre-school<br>Cognitive skills<br>Non cognitive skills<br>Education aspirations<br>Primary schooling<br>Occupation   Employment<br>Social classification<br>Income<br>Finances<br>Assets<br>Consumption   Expenditure<br>Pensions<br>Benefits   Welfare<br>Social attitudes<br>Politics | 10806<br>10807<br>10808<br>10810<br>10811<br>10813<br>10815<br>10901<br>10902<br>10903<br>10904<br>10905<br>10906<br>10907<br>10908<br>11001<br>11002 | 0.000<br>0.577<br>0.667<br>0.759<br>0.000<br>0.522<br>0.780<br>0.891<br>0.400<br>0.843<br>0.793<br>0.333<br>0.711<br>0.000<br>0.833<br>0.750<br>0.857 | 7<br>28<br>6<br>17<br>5<br>15<br>21<br>385<br>15<br>62<br>57<br>5<br>23<br>2<br>3<br>2<br>2<br>3<br>2<br>13<br>5<br>19 | 108   108   108   108   108   108   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   109   110                   | 0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.869<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903<br>0.903 | 617<br>617<br>617<br>617<br>617<br>617<br>617<br>711<br>711        |

| Language and vocabulary  | 11102 | 0.911 | 83   | 111 | 0.859 | 585  |
|--------------------------|-------|-------|------|-----|-------|------|
| Parenting                | 11103 | 0.811 | 186  | 111 | 0.859 | 585  |
| Developmental milestones | 11104 | 0.864 | 63   | 111 | 0.859 | 585  |
| Childbirth               | 11401 | 0.658 | 34   | 114 | 0.694 | 119  |
| Macro average            |       | 0.705 | 7038 |     | 0.841 | 7034 |
| Weighted average         |       | 0.781 | 7038 |     | 0.875 | 7034 |



*Fig.2. Per-class F1-scores for BERT\_base\_uncased in both 14-class and 98-class classification.* 

Table 2: Second level per-class and aggregate (in bold) f1-scores for the ULMFit model trained with question-response concatenation and the addition of section heading metadata. Note that the 100-class categorisation model includes the "COVID-19" and "Omics" classes, which are not shown here.

|                       |         | 98- f1- | # Items    |         | 14 - f1- | # Items (98- |
|-----------------------|---------|---------|------------|---------|----------|--------------|
| Category              | 98 CODE | score   | (98-class) | 14 CODE | score    | class)       |
| Place of birth        | 10101   | 0.769   | 15         | 101     | 0.827    | 203          |
| Gender                | 10102   | 0.105   | 18         | 101     | 0.827    | 203          |
| Ethnic group          | 10103   | 0.744   | 21         | 101     | 0.827    | 203          |
| Language(s) spoken    | 10104   | 0.000   | 10         | 101     | 0.827    | 203          |
| Location              | 10106   | 0.087   | 21         | 101     | 0.827    | 203          |
| Age                   | 10107   | 0.000   | 20         | 101     | 0.827    | 203          |
| Housing               | 10201   | 0.713   | 137        | 102     | 0.905    | 355          |
| Neighbourhood         | 10202   | 0.627   | 43         | 102     | 0.905    | 355          |
| Travel and transport  | 10203   | 0.794   | 64         | 102     | 0.905    | 355          |
| Environmental         |         |         |            |         |          |              |
| exposure              | 10204   | 0.696   | 77         | 102     | 0.905    | 355          |
| Cardiovascular system | 10301   | 0.497   | 83         | 103     | 0.912    | 1372         |
| Musculoskeletal       |         |         |            |         |          |              |
| system                | 10302   | 0.358   | 81         | 103     | 0.912    | 1372         |

| Nervous system           | 10304 | 0.328 | 46       | 103 | 0.912 | 1372       |
|--------------------------|-------|-------|----------|-----|-------|------------|
| Digestive system         | 10305 | 0.667 | 60       | 103 | 0.912 | 1372       |
| Urogenital system        | 10306 | 0.545 | 52       | 103 | 0.912 | 1372       |
| Endocrine system         | 10307 | 0.000 | 16       | 103 | 0.912 | 1372       |
| Hemic and immune         |       |       |          |     |       |            |
| systems                  | 10308 | 0.000 | 10       | 103 | 0.912 | 1372       |
| Hearing, vision, speech  | 10309 | 0.598 | 137      | 103 | 0.912 | 1372       |
| Oral/dental health       | 10310 | 0.634 | 52       | 103 | 0.912 | 1372       |
| Congenital               |       |       |          |     |       |            |
| malformations            | 10312 | 0.000 | 10       | 103 | 0.912 | 1372       |
| Cancer                   | 10313 | 0.000 | 4        | 103 | 0.912 | 1372       |
| Mortality                | 10314 | 0.000 | 17       | 103 | 0.912 | 1372       |
| Women's health           | 10316 | 0.564 | 44       | 103 | 0.912 | 1372       |
| Accidents and injuries   | 10317 | 0.888 | 83       | 103 | 0.912 | 1372       |
| Allergies                | 10318 | 0.761 | 70       | 103 | 0.912 | 1372       |
| Infections               | 10319 | 0.724 | 34       | 103 | 0.912 | 1372       |
| Anthropometry            | 10320 | 0.783 | 100      | 103 | 0.912 | 1372       |
| Physical characteristics | 10321 | 0.737 | 41       | 103 | 0.912 | 1372       |
| Physical functioning     | 10322 | 0.450 | 54       | 103 | 0.912 | 1372       |
| General health           | 10323 | 0.305 | 138      | 103 | 0.912 | 1372       |
| Mental disorders         | 10401 | 0.516 | 32       | 104 | 0.934 | 942        |
| Personality              |       |       |          |     |       |            |
| Temperament              | 10402 | 0.699 | 238      | 104 | 0.934 | 942        |
| Wellbeing                | 10403 | 0.355 | 51       | 104 | 0.934 | 942        |
| Emotions                 | 10404 | 0.259 | 47       | 104 | 0.934 | 942        |
| Cognitive function       | 10405 | 0.483 | 41       | 104 | 0.934 | 942        |
| Health services          |       |       |          |     |       |            |
| utilisation              | 10501 | 0.242 | 64       | 105 | 0.748 | 251        |
| Hospital admissions      | 10502 | 0.663 | 72       | 105 | 0.748 | 251        |
| Immunisations            | 10503 | 0.000 | 10       | 105 | 0.748 | 251        |
| Medications              | 10504 | 0.559 | 38       | 105 | 0.748 | 251        |
| Complementary            | 10505 | 0 770 | 1.1      | 105 | 0.740 | 254        |
| therapies                | 10505 | 0.778 | 11       | 105 | 0.748 | 251        |
| Diet and nutrition       | 10601 | 0.840 | 256      | 106 | 0.948 | 542        |
| Physical activity        | 10602 | 0.667 | 56       | 106 | 0.948 | 542        |
| Alcohol consumption      | 10605 | 0.800 | 84       | 106 | 0.948 | 542        |
| Substance abuse          | 10606 | 0.868 | 52       | 106 | 0.948 | 542        |
| Criminal behaviour       | 10608 | 0.000 | 5        | 106 | 0.948 | 542        |
| Home life                | 10/01 | 0.614 | /8       | 107 | 0.899 | 823        |
| Household                | 10702 |       | 02       | 107 | 0.000 | 012        |
|                          | 10702 | 0.005 | 60<br>67 | 107 | 0.033 | 020<br>010 |
|                          | 10103 | 0.587 | 10       | 107 | 0.899 | ōZ3        |
| relations                | 10704 | 0 575 | 152      | 107 | 0 800 | 873        |
|                          | 10/04 | 0.070 | 1.72     | 101 | 0.099 | 025        |

| Friends               | 10705 | 0.065 | 29        | 107 | 0.899 | 823  |
|-----------------------|-------|-------|-----------|-----|-------|------|
| Childcare             | 10706 | 0.138 | 27        | 107 | 0.899 | 823  |
| Child welfare         | 10707 | 0.000 | 9         | 107 | 0.899 | 823  |
| Social support        | 10708 | 0.650 | 104       | 107 | 0.899 | 823  |
| Leisure activities    | 10709 | 0.638 | 93        | 107 | 0.899 | 823  |
| Technology            | 10711 | 0.000 | 17        | 107 | 0.899 | 823  |
| Qualifications        | 10801 | 0.887 | 95        | 108 | 0.904 | 617  |
| Further education     |       |       |           |     |       |      |
| Higher education      | 10803 | 0.190 | 38        | 108 | 0.904 | 617  |
| Training              | 10804 | 0.000 | 25        | 108 | 0.904 | 617  |
| Basic skills          | 10805 | 0.686 | 57        | 108 | 0.904 | 617  |
| Adult education       | 10806 | 0.000 | 7         | 108 | 0.904 | 617  |
| Learning difficulties | 10807 | 0.067 | 28        | 108 | 0.904 | 617  |
| Pre-school            | 10808 | 0.000 | 6         | 108 | 0.904 | 617  |
| Cognitive skills      | 10810 | 0.000 | 17        | 108 | 0.904 | 617  |
| Non cognitive skills  | 10811 | 0.000 | 5         | 108 | 0.904 | 617  |
| Education aspirations | 10813 | 0.000 | 15        | 108 | 0.904 | 617  |
| Primary schooling     | 10815 | 0.000 | 21        | 108 | 0.904 | 617  |
| Occupation            |       |       |           |     |       |      |
| Employment            | 10901 | 0.761 | 385       | 109 | 0.937 | 711  |
| Social classification | 10902 | 0.000 | 15        | 109 | 0.937 | 711  |
| Income                | 10903 | 0.694 | 62        | 109 | 0.937 | 711  |
| Finances              | 10904 | 0.672 | 57        | 109 | 0.937 | 711  |
| Assets                | 10905 | 0.000 | 5         | 109 | 0.937 | 711  |
| Consumption           |       |       |           |     |       |      |
| Expenditure           | 10906 | 0.545 | 23        | 109 | 0.937 | 711  |
| Pensions              | 10907 | 0.000 | 2         | 109 | 0.937 | 711  |
| Benefits   Welfare    | 10908 | 0.526 | 13        | 109 | 0.937 | 711  |
| Social attitudes      | 11001 | 0.000 | 5         | 110 | 0.811 | 126  |
| Politics              | 11002 | 0.773 | 19        | 110 | 0.811 | 126  |
| Infant feeding        | 11101 | 0.227 | 34        | 111 | 0.917 | 585  |
| Language and          |       |       |           |     |       |      |
| vocabulary            | 11102 | 0.827 | 83        | 111 | 0.917 | 585  |
| Parenting             | 11103 | 0.678 | 186       | 111 | 0.917 | 585  |
| Developmental         |       | 0.010 | <b>CO</b> |     | 0.047 | 5.05 |
| milestones            | 11104 | 0.812 | 63        | 111 | 0.917 | 585  |
| Childbirth            | 11401 | 0.592 | 34        | 114 | 0.815 | 119  |
| Macro average         |       | 0.440 | /038      |     | 0.879 | /034 |
| Weighted average      |       | 0.627 | 7038      |     | 0.904 | 7034 |



Fig.3. Per-class F1-scores for ULMFit in both 14-class and 98-class classification.

Table 3: Second level per-class and aggregate (in bold) f1-scores for the Simple LSTM model trained with question-response concatenation and the addition of section heading metadata. Note that the 100-class categorisation model includes the "COVID-19" and "Omics" classes, which are not shown here.

|                         |         | 98 f1- |         |         | 14 - f1- | dataset |
|-------------------------|---------|--------|---------|---------|----------|---------|
| Category                | 98 CODE | score  | support | 14 CODE | score    | size    |
| Place of birth          | 10101   | 0.786  | 13      | 101     | 0.798    | 194     |
| Gender                  | 10102   | 0.692  | 15      | 101     | 0.798    | 194     |
| Ethnic group            | 10103   | 0.913  | 22      | 101     | 0.798    | 194     |
| Language(s) spoken      | 10104   | 0.706  | 8       | 101     | 0.798    | 194     |
| Location                | 10106   | 0.686  | 20      | 101     | 0.798    | 194     |
| Age                     | 10107   | 0.686  | 19      | 101     | 0.798    | 194     |
| Housing                 | 10201   | 0.805  | 133     | 102     | 0.844    | 343     |
| Neighbourhood           | 10202   | 0.895  | 41      | 102     | 0.844    | 343     |
| Travel and transport    | 10203   | 0.831  | 63      | 102     | 0.844    | 343     |
| Environmental exposure  | 10204   | 0.738  | 71      | 102     | 0.844    | 343     |
| Cardiovascular system   | 10301   | 0.727  | 80      | 103     | 0.886    | 1298    |
| Musculoskeletal system  | 10302   | 0.697  | 76      | 103     | 0.886    | 1298    |
| Nervous system          | 10304   | 0.771  | 45      | 103     | 0.886    | 1298    |
| Digestive system        | 10305   | 0.836  | 57      | 103     | 0.886    | 1298    |
| Urogenital system       | 10306   | 0.700  | 51      | 103     | 0.886    | 1298    |
| Endocrine system        | 10307   | 0.471  | 15      | 103     | 0.886    | 1298    |
| Hemic and immune        |         |        |         |         |          |         |
| systems                 | 10308   | 0.222  | 10      | 103     | 0.886    | 1298    |
| Hearing, vision, speech | 10309   | 0.833  | 129     | 103     | 0.886    | 1298    |
| Oral/dental health      | 10310   | 0.679  | 51      | 103     | 0.886    | 1298    |

| Congenital malformations    | 10312 | 0.625 | 11  | 103 | 0.886 | 1298 |
|-----------------------------|-------|-------|-----|-----|-------|------|
| Cancer                      | 10313 | 0.333 | 4   | 103 | 0.886 | 1298 |
| Mortality                   | 10314 | 0.621 | 17  | 103 | 0.886 | 1298 |
| Women's health              | 10316 | 0.854 | 42  | 103 | 0.886 | 1298 |
| Accidents and injuries      | 10317 | 0.894 | 80  | 103 | 0.886 | 1298 |
| Allergies                   | 10318 | 0.791 | 67  | 103 | 0.886 | 1298 |
| Infections                  | 10319 | 0.746 | 33  | 103 | 0.886 | 1298 |
| Anthropometry               | 10320 | 0.860 | 98  | 103 | 0.886 | 1298 |
| Physical characteristics    | 10321 | 0.764 | 40  | 103 | 0.886 | 1298 |
| Physical functioning        | 10322 | 0.420 | 49  | 103 | 0.886 | 1298 |
| General health              | 10323 | 0.435 | 132 | 103 | 0.886 | 1298 |
| Mental disorders            | 10401 | 0.813 | 31  | 104 | 0.905 | 906  |
| Personality                 |       |       |     |     |       |      |
| Temperament                 | 10402 | 0.808 | 226 | 104 | 0.905 | 906  |
| Wellbeing                   | 10403 | 0.651 | 49  | 104 | 0.905 | 906  |
| Emotions                    | 10404 | 0.692 | 42  | 104 | 0.905 | 906  |
| Cognitive function          | 10405 | 0.703 | 37  | 104 | 0.905 | 906  |
| Health services utilisation | 10501 | 0.508 | 64  | 105 | 0.709 | 242  |
| Hospital admissions         | 10502 | 0.785 | 69  | 105 | 0.709 | 242  |
| Immunisations               | 10503 | 0.556 | 10  | 105 | 0.709 | 242  |
| Medications                 | 10504 | 0.750 | 34  | 105 | 0.709 | 242  |
| Complementary therapies     | 10505 | 0.857 | 12  | 105 | 0.709 | 242  |
| Diet and nutrition          | 10601 | 0.898 | 240 | 106 | 0.913 | 527  |
| Physical activity           | 10602 | 0.705 | 54  | 106 | 0.913 | 527  |
| Alcohol consumption         | 10605 | 0.899 | 80  | 106 | 0.913 | 527  |
| Substance abuse             | 10606 | 0.981 | 52  | 106 | 0.913 | 527  |
| Criminal behaviour          | 10608 | 1.000 | 5   | 106 | 0.913 | 527  |
| Home life                   | 10701 | 0.740 | 77  | 107 | 0.875 | 786  |
| Household composition       | 10702 | 0.764 | 80  | 107 | 0.875 | 786  |
| Marital status              | 10703 | 0.750 | 65  | 107 | 0.875 | 786  |
| Family members and          |       |       |     |     |       |      |
| relations                   | 10704 | 0.728 | 141 | 107 | 0.875 | 786  |
| Friends                     | 10705 | 0.560 | 28  | 107 | 0.875 | 786  |
| Childcare                   | 10706 | 0.679 | 27  | 107 | 0.875 | 786  |
| Child welfare               | 10707 | 0.667 | 9   | 107 | 0.875 | 786  |
| Social support              | 10708 | 0.765 | 99  | 107 | 0.875 | 786  |
| Leisure activities          | 10709 | 0.749 | 90  | 107 | 0.875 | 786  |
| Technology                  | 10711 | 0.706 | 17  | 107 | 0.875 | 786  |
| Qualifications              | 10801 | 0.937 | 88  | 108 | 0.855 | 588  |
| Further education           |       |       |     |     |       |      |
| Higher education            | 10803 | 0.676 | 38  | 108 | 0.855 | 588  |
| Training                    | 10804 | 0.621 | 25  | 108 | 0.855 | 588  |
| Basic skills                | 10805 | 0.722 | 56  | 108 | 0.855 | 588  |

| Adult education         | 10806 | 0.667 | 7    | 108 | 0.855 | 588  |
|-------------------------|-------|-------|------|-----|-------|------|
| Learning difficulties   | 10807 | 0.717 | 28   | 108 | 0.855 | 588  |
| Pre-school              | 10808 | 0.400 | 6    | 108 | 0.855 | 588  |
| Cognitive skills        | 10810 | 0.759 | 16   | 108 | 0.855 | 588  |
| Non cognitive skills    | 10811 | 0.200 | 5    | 108 | 0.855 | 588  |
| Education aspirations   | 10813 | 0.500 | 15   | 108 | 0.855 | 588  |
| Primary schooling       | 10815 | 0.756 | 20   | 108 | 0.855 | 588  |
| Occupation   Employment | 10901 | 0.857 | 373  | 109 | 0.887 | 675  |
| Social classification   | 10902 | 0.846 | 15   | 109 | 0.887 | 675  |
| Income                  | 10903 | 0.750 | 61   | 109 | 0.887 | 675  |
| Finances                | 10904 | 0.766 | 56   | 109 | 0.887 | 675  |
| Assets                  | 10905 | 0.500 | 5    | 109 | 0.887 | 675  |
| Consumption             |       |       |      |     |       |      |
| Expenditure             | 10906 | 0.714 | 24   | 109 | 0.887 | 675  |
| Pensions                | 10907 | 0.500 | 3    | 109 | 0.887 | 675  |
| Benefits   Welfare      | 10908 | 0.833 | 13   | 109 | 0.887 | 675  |
| Social attitudes        | 11001 | 0.600 | 5    | 110 | 0.670 | 121  |
| Politics                | 11002 | 0.800 | 19   | 110 | 0.670 | 121  |
| Infant feeding          | 11101 | 0.703 | 33   | 111 | 0.872 | 562  |
| Language and vocabulary | 11102 | 0.907 | 80   | 111 | 0.872 | 562  |
| Parenting               | 11103 | 0.816 | 177  | 111 | 0.872 | 562  |
| Developmental           |       |       |      |     |       |      |
| milestones              | 11104 | 0.889 | 60   | 111 | 0.872 | 562  |
| Childbirth              | 11401 | 0.763 | 33   | 114 | 0.723 | 116  |
| Macro average           |       | 0.724 | 6736 |     | 0.830 | 7034 |
| Weighted average        |       | 0.787 | 6736 |     | 0.866 | 7034 |



Fig.4. Per-class F1-scores for the Simple LSTM model in both 14-class and 98-class classification.

| Table 4: Second level per-class | s and aggr | egate  | (in k      | oold) f1-scores fo | r the Mult   | inomia | I Na       | aive E | 3ayes |
|---------------------------------|------------|--------|------------|--------------------|--------------|--------|------------|--------|-------|
| model trained with question-re  | esponse co | ncater | natio      | on and the additic | on of sectio | n head | ing        | meta   | data. |
|                                 |            |        |            |                    |              |        |            |        |       |
|                                 |            |        | <b>*</b> • |                    |              |        | <b>6</b> • |        |       |

|                             |         | 98 f1- |         |         | 14 - f1- | dataset |
|-----------------------------|---------|--------|---------|---------|----------|---------|
| Category                    | 98 CODE | score  | support | 14 CODE | score    | size    |
| Place of birth              | 10101   | 0.000  | 15      | 101     | 0.663    | 203     |
| Gender                      | 10102   | 0.500  | 18      | 101     | 0.663    | 203     |
| Ethnic group                | 10103   | 0.000  | 21      | 101     | 0.663    | 203     |
| Language(s) spoken          | 10104   | 0.000  | 10      | 101     | 0.663    | 203     |
| Location                    | 10106   | 0.000  | 21      | 101     | 0.663    | 203     |
| Age                         | 10107   | 0.000  | 20      | 101     | 0.663    | 203     |
| Housing                     | 10201   | 0.718  | 137     | 102     | 0.776    | 355     |
| Neighbourhood               | 10202   | 0.542  | 43      | 102     | 0.776    | 355     |
| Travel and transport        | 10203   | 0.611  | 64      | 102     | 0.776    | 355     |
| Environmental exposure      | 10204   | 0.632  | 77      | 102     | 0.776    | 355     |
| Cardiovascular system       | 10301   | 0.496  | 83      | 103     | 0.827    | 1372    |
| Musculoskeletal system      | 10302   | 0.400  | 81      | 103     | 0.827    | 1372    |
| Nervous system              | 10304   | 0.296  | 46      | 103     | 0.827    | 1372    |
| Digestive system            | 10305   | 0.583  | 60      | 103     | 0.827    | 1372    |
| Urogenital system           | 10306   | 0.632  | 52      | 103     | 0.827    | 1372    |
| Endocrine system            | 10307   | 0.000  | 16      | 103     | 0.827    | 1372    |
| Hemic and immune systems    | 10308   | 0.000  | 10      | 103     | 0.827    | 1372    |
| Hearing, vision, speech     | 10309   | 0.773  | 137     | 103     | 0.827    | 1372    |
| Oral/dental health          | 10310   | 0.290  | 52      | 103     | 0.827    | 1372    |
| Congenital malformations    | 10312   | 0.000  | 10      | 103     | 0.827    | 1372    |
| Cancer                      | 10313   | 0.000  | 4       | 103     | 0.827    | 1372    |
| Mortality                   | 10314   | 0.000  | 17      | 103     | 0.827    | 1372    |
| Women's health              | 10316   | 0.275  | 44      | 103     | 0.827    | 1372    |
| Accidents and injuries      | 10317   | 0.781  | 82      | 103     | 0.827    | 1372    |
| Allergies                   | 10318   | 0.765  | 70      | 103     | 0.827    | 1372    |
| Infections                  | 10319   | 0.553  | 34      | 103     | 0.827    | 1372    |
| Anthropometry               | 10320   | 0.820  | 100     | 103     | 0.827    | 1372    |
| Physical characteristics    | 10321   | 0.586  | 41      | 103     | 0.827    | 1372    |
| Physical functioning        | 10322   | 0.382  | 54      | 103     | 0.827    | 1372    |
| General health              | 10323   | 0.316  | 138     | 103     | 0.827    | 1372    |
| Mental disorders            | 10401   | 0.000  | 32      | 104     | 0.839    | 942     |
| Personality   Temperament   | 10402   | 0.705  | 238     | 104     | 0.839    | 942     |
| Wellbeing                   | 10403   | 0.207  | 51      | 104     | 0.839    | 942     |
| Emotions                    | 10404   | 0.000  | 47      | 104     | 0.839    | 942     |
| Cognitive function          | 10405   | 0.093  | 41      | 104     | 0.839    | 942     |
| Health services utilisation | 10501   | 0.192  | 64      | 105     | 0.459    | 251     |
| Hospital admissions         | 10502   | 0.491  | 72      | 105     | 0.459    | 251     |

| Immunisations                | 10503 | 0.000 | 10  | 105 | 0.459 | 251 |
|------------------------------|-------|-------|-----|-----|-------|-----|
| Medications                  | 10504 | 0.449 | 38  | 105 | 0.459 | 251 |
| Complementary therapies      | 10505 | 0.533 | 11  | 105 | 0.459 | 251 |
| Diet and nutrition           | 10601 | 0.865 | 255 | 106 | 0.886 | 542 |
| Physical activity            | 10602 | 0.459 | 56  | 106 | 0.886 | 542 |
| Alcohol consumption          | 10605 | 0.786 | 84  | 106 | 0.886 | 542 |
| Substance abuse              | 10606 | 0.835 | 52  | 106 | 0.886 | 542 |
| Criminal behaviour           | 10608 | 0.000 | 5   | 106 | 0.886 | 542 |
| Home life                    | 10701 | 0.542 | 78  | 107 | 0.803 | 823 |
| Household composition        | 10702 | 0.569 | 83  | 107 | 0.803 | 823 |
| Marital status               | 10703 | 0.654 | 67  | 107 | 0.803 | 823 |
| Family members and relations | 10704 | 0.653 | 152 | 107 | 0.803 | 823 |
| Friends                      | 10705 | 0.000 | 29  | 107 | 0.803 | 823 |
| Childcare                    | 10706 | 0.000 | 27  | 107 | 0.803 | 823 |
| Child welfare                | 10707 | 0.000 | 9   | 107 | 0.803 | 823 |
| Social support               | 10708 | 0.654 | 104 | 107 | 0.803 | 823 |
| Leisure activities           | 10709 | 0.544 | 93  | 107 | 0.803 | 823 |
| Technology                   | 10711 | 0.000 | 17  | 107 | 0.803 | 823 |
| Qualifications               | 10801 | 0.837 | 95  | 108 | 0.828 | 617 |
| Further education   Higher   |       |       |     |     |       |     |
| education                    | 10803 | 0.273 | 38  | 108 | 0.828 | 617 |
| Training                     | 10804 | 0.000 | 25  | 108 | 0.828 | 617 |
| Basic skills                 | 10805 | 0.351 | 57  | 108 | 0.828 | 617 |
| Adult education              | 10806 | 0.000 | 7   | 108 | 0.828 | 617 |
| Learning difficulties        | 10807 | 0.000 | 28  | 108 | 0.828 | 617 |
| Pre-school                   | 10808 | 0.000 | 6   | 108 | 0.828 | 617 |
| Cognitive skills             | 10810 | 0.000 | 17  | 108 | 0.828 | 617 |
| Non cognitive skills         | 10811 | 0.000 | 5   | 108 | 0.828 | 617 |
| Education aspirations        | 10813 | 0.000 | 15  | 108 | 0.828 | 617 |
| Primary schooling            | 10815 | 0.483 | 22  | 108 | 0.828 | 617 |
| Occupation   Employment      | 10901 | 0.514 | 385 | 109 | 0.864 | 711 |
| Social classification        | 10902 | 0.000 | 15  | 109 | 0.864 | 711 |
| Income                       | 10903 | 0.638 | 62  | 109 | 0.864 | 711 |
| Finances                     | 10904 | 0.417 | 57  | 109 | 0.864 | 711 |
| Assets                       | 10905 | 0.000 | 5   | 109 | 0.864 | 711 |
| Consumption   Expenditure    | 10906 | 0.000 | 23  | 109 | 0.864 | 711 |
| Pensions                     | 10907 | 0.000 | 2   | 109 | 0.864 | 711 |
| Benefits   Welfare           | 10908 | 0.556 | 13  | 109 | 0.864 | 711 |
| Social attitudes             | 11001 | 0.000 | 5   | 110 | 0.353 | 126 |
| Politics                     | 11002 | 0.273 | 19  | 110 | 0.353 | 126 |
| Infant feeding               | 11101 | 0.211 | 34  | 111 | 0.796 | 585 |
| Language and vocabulary      | 11102 | 0.588 | 83  | 111 | 0.796 | 585 |
| Parenting                    | 11103 | 0.734 | 186 | 111 | 0.796 | 585 |

| Developmental milestones | 11104 | 0.692 | 64   | 111 | 0.796 | 585  |
|--------------------------|-------|-------|------|-----|-------|------|
| Childbirth               | 11401 | 0.522 | 34   | 114 | 0.261 | 119  |
| Macro average            |       | 0.370 | 7032 |     | 0.702 | 7034 |
| Weighted average         |       | 0.556 | 7032 |     | 0.789 | 7034 |



Fig.5. Per-class F1-scores for the Multinomial Naive Bayes model in both 14-class and 98-class classification.

The maximum weighted average F1 score in the 14-class problem is achieved by the ULMFit model, closely followed by the BERT\_base\_uncased model. The Multinomial Naive Bayes model is used as a baseline to rule out any neural network-based models that fall under the performance of this less computationally demanding model. BERT\_base\_uncased achieves the maximum weighted F1 score in the 98-class classification task and appears to produce more stable performance across the two tasks than the ULMFit model.

# 2. Concept prediction - evaluation against a range of different types of unseen data

Previously unexplored dimensions of the training dataset are its representativeness for new data (in this case unseen studies) and whether changes in the way similar questions (by vocabulary category) are asked in different domains (social science vs biomedical) ask the same questions.

We take questions annotated to the CLOSER vocabulary, from new studies from a social science and biomedical domain, remove the annotation and examine the F1 score (prediction) evaluation metric results with that manually tagged.

In order to see how the trained models work on a new dataset, we used "Health and Employment After Fifty" (HEAF) (study website: <u>https://www.mrc.soton.ac.uk/heaf/</u>) questionnaires as the unseen data. The data was obtained the same way as the training data, i.e. using the API from Closer Discovery (described in section 3). The models were then run in inference mode on this new data.

Table 5: Aggregate and per-category f1-scores for all considered models derived from inference using the HEAF dataset. All models were trained with features using question-response concatenation and section-heading metadata.

| Category                               | BERT base uncased | Multinomial<br>Naive Bayes | ULMFit | Simple LSTM | Number<br>of items |
|----------------------------------------|-------------------|----------------------------|--------|-------------|--------------------|
| Administration                         | 0.000             | 0.000                      | 0.000  | 0.000       | 0                  |
| Child development                      | 0.000             | 0.000                      | 0.000  | 0.000       | 0                  |
| Demographics                           | 0.500             | 1.000                      | 1.000  | 0.727       | 6                  |
| Education                              | 0.000             | 0.000                      | 0.000  | 0.000       | 0                  |
| Employment and income                  | 0.889             | 0.765                      | 0.722  | 0.837       | 191                |
| Expectations, attitudes<br>and beliefs | 0.000             | 0.000                      | 0.000  | 0.000       | 0                  |
| Family and social networks             | 0.533             | 0.467                      | 0.316  | 0.737       | 7                  |
| Health behaviour                       | 0.837             | 0.833                      | 0.810  | 0.718       | 21                 |
| Health care                            | 0.000             | 0.000                      | 0.000  | 0.000       | 0                  |
| Housing and local<br>environment       | 0.000             | 0.000                      | 0.000  | 0.000       | 0                  |
| Life events                            | 0.000             | 0.000                      | 0.000  | 0.000       | 14                 |
| Mental health and mental processes     | 0.000             | 0.000                      | 0.000  | 0.000       | 6                  |
| Physical health                        | 0.862             | 0.708                      | 0.682  | 0.721       | 53                 |
| Pregnancy                              | 0.000             | 0.000                      | 0.000  | 0.000       | 0                  |
| Micro average                          | 0.805             | 0.691                      | 0.628  | 0.715       | 298                |
| Macro average                          | 0.259             | 0.270                      | 0.252  | 0.267       | 298                |
| Weighted average                       | 0.805             | 0.706                      | 0.668  | 0.747       | 298                |

Table 5 shows the per-class and aggregate F1 scores for each considered model with the HEAF dataset. The *micro average* F1 score is calculated using a precision and recall taken from the total precision and total recall summed over all samples, and does not consider category size. Again, all models shown represent the variant trained on data question-response concatenation and the addition of section heading metadata. It is clear from the weighted averages in table 5 that the BERT-type model represents by some distance the greatest performance over this unseen dataset, and may be the preferred model for further work with unseen datasets. The *generalisability* of a trained neural network model, the ability to retain model performance seen in test data taken from the training data corpus and novel unseen data, is one of the clearest indicators of ultimate model utility. The high F1

score seen in the BERT\_base\_uncased model on this unseen dataset suggests a low-level of *overtraining* on the initial training dataset, although assessment of performance on additional unseen datasets will be required to determine this conclusively.

3. Concept prediction - understanding the relationship between training dataset size and prediction, i.e. the minimum training dataset set size and compositions

Previous work (Fig. 1) has established that F1 score by model varies across different vocabulary terms. Understanding the inflexion point where the F1 score drops will provide a deeper understanding of this relationship, providing guidance for the development of further training datasets for concept prediction in other languages and vocabularies. The full CLOSER vocabulary contains > 120 categories, so this will assist in identifying areas where the composition of the training datasets could be improved to get equitable prediction across all potential vocabulary categories.

The training dataset was extracted using Python 3 code (Li, J., 2021) from CLOSER Discovery utilising the Colectica Repository REST API (Colectica, 2021). The training dataset generation is described in (De et al., 2022).

The training dataset contained approx. 36000 rows, composed of question text, response domain and annotated with the 16 item CLOSER vocabulary (https://wiki.ucl.ac.uk/display/CLOS/Topics).

The dataset was randomly segmented into deciles of decreasing size. Multinomial Naive Bayes was taken to be the baseline model, against which all other considered models were compared. Aggregate F1-scores for each model at each dataset size are provided in table 6.

Table 6. F1-score by dataset size and vocabulary category. F1-scores are evaluated against the Multinomial Naive Bayes score at the full dataset size of 0.702 (macro average) and 0.789 (weighted average). Entries are coloured red if they are below this baseline and green if they are equal to or above. For each dataset size, the largest f1-score is shown in bold.

| Measure   | Dataset<br>size | BERT F1 | ULMFit F1 | Simple LSTM F1 | Naive Bayes F1 |
|-----------|-----------------|---------|-----------|----------------|----------------|
| macro avg | 10              | 0.249   | 0.523     | 0.291          | 0.440          |
| macro avg | 20              | 0.499   | 0.659     | 0.517          | 0.515          |
| macro avg | 30              | 0.631   | 0.748     | 0.635          | 0.564          |
| macro avg | 40              | 0.721   | 0.794     | 0.674          | 0.586          |
| macro avg | 50              | 0.778   | 0.803     | 0.705          | 0.649          |
| macro avg | 60              | 0.781   | 0.833     | 0.737          | 0.655          |

| macro avg    | 70 | 0.805 | 0.859 | 0.780 | 0.678 |
|--------------|----|-------|-------|-------|-------|
| macro avg    | 80 | 0.813 | 0.853 | 0.798 | 0.669 |
| macro avg    | 90 | 0.808 | 0.863 | 0.817 | 0.685 |
| weighted avg | 10 | 0.421 | 0.592 | 0.389 | 0.551 |
| weighted avg | 20 | 0.656 | 0.718 | 0.616 | 0.653 |
| weighted avg | 30 | 0.748 | 0.787 | 0.709 | 0.693 |
| weighted avg | 40 | 0.799 | 0.832 | 0.741 | 0.705 |
| weighted avg | 50 | 0.828 | 0.837 | 0.775 | 0.752 |
| weighted avg | 60 | 0.837 | 0.860 | 0.794 | 0.758 |
| weighted avg | 70 | 0.848 | 0.880 | 0.828 | 0.771 |
| weighted avg | 80 | 0.860 | 0.878 | 0.837 | 0.771 |
| weighted avg | 90 | 0.859 | 0.888 | 0.859 | 0.780 |

From these results it is clear that ULMFit is the most robust neural-network based model across different dataset sizes, followed closely by BERT\_base\_uncased. The low macro averaged f1-scores at low dataset size show that BERT may be more substantially affected by under-represented classes when compared with ULMFit, although BERT suffers less with respect to ULMFit when considering the weighted average f1-score.

# 4. Concept prediction - investigating hierarchical and multi-label approaches for second-level topic classification

Hierarchical classification approaches for the second-level topic classification task, for classifying a question text into its relevant top-level and second-level hierarchy, have been investigated through deep neural networks. Hierarchical document classifiers have been designed using a Recurrent Neural Networks (RNN) to implement the layered structure of nonlinear processing components. The developed approach considers the entire training dataset in the first step of the top-level topic classification. The second level of prediction is done by lowering and narrowing the next set of inputs as the child nodes from the output of the top-level prediction. These are then extended to incorporate an attention layer to emphasise distinct areas of the text's semantic representation.

An attention function is generally used to describe the mapping of a query and a collection of keyvalue pairs to an output, where the query, keys, values, and output are all vectors. The output is a weighted sum of the values, with each value assigned a weight defined by the query's compatibility function with the relevant key. Here the attention mechanism focuses on phrase segments, with the significance of the segment defined by its contribution to the job.

In the attention mechanism, by combining the encoder output and decoder output at timestamp t, a context vector is created. The encoder's most relevant information is included into the context vector. Following data pre-processing (punctuation removal, lowercasing and conversion of 5-digit encoded top and second-level category into separated top-level and second-level columns in the dataset), the top-level and second-levels (level 1 and level 2 for hierarchical classification) are converted into a dictionary with the appropriate key and value pair. The model architecture consists of a Gated

Recurrent unit (GRU) with 100 cells and a dropout percentage of 0.2%. The GRU sequential model is supplemented by a GloVe embedding layer that uses the 'n' unique words in our dataset, which totals 9109 tokens.

For each input sentence, a sequence of annotations are generated by the Bidirectional GRU. These vectors are obtained by concatenation of forward and backward hidden states in the encoder, with the context vector constructed by concentrating on the word embeddings in the input that are represented by hidden states, and this is accomplished by simply adding the weighted sums of the hidden states together. The loss function used is 'sparse\_categorical\_crossentropy' with a Softmax activation function and RMSProp as the optimiser over 10 epochs. Figure 6 shows the per-class f1-score for the second-level 100-class problem for a sample of representative classes (each second-level topic is specified with the fully qualified top level-second level naming convention).



*Fig.6. Per-class F1-scores for RNN and RNN-with-attention hierarchical models for second-level topic classification.* 

From the figure, hiRNN gives a slightly better performance than with the attention mechanism, for some of the second-level topics, though the difference is not appreciable in many cases. This is more prominent in cases where the question text is very short. The next planned method is to investigate 'teacher forcing' to train an RNN model such as LSTM. Instead of using the last generated word as the next input to the decoder, teacher forcing uses the target word and the loss is recorded. This avoids very poor results during the early stages of training as the decoder is being corrected, enabling the training to converge much quicker.

### 5. Conclusions and Future Work

In this work-package, we have investigated the impact on question text topic/category classification from various aspects, namely,

- type of ML model architecture,
- size of the training dataset
- level of heterogeneity in the composition of the dataset (14-class versus 98-class)

It is evident that the difference in prediction performance in the top-level (14-class) versus the secondlevel of topics (98-class) can be attributed to both the size and composition of the supporting training samples. While neural network-based ML models deliver improved performance with bigger training sets, the CLOSER dataset also has the additional challenge of label bias in the annotation of the toplevel and second-level topics (where the annotation of question texts to specific topics from the CLOSER ontology is performed by the corresponding experts who performed the study) as well as the influence of semantic divergence within each top-level and second-level topics. Intuitively, the level of semantic divergence is higher at the 14-class level. This challenge is not particular to the particular CLOSER ontology, but points to the need for measures to be put into place for a training dataset to achieve a given level of prediction. A direction of investigation in this regard is the semantic heterogeneity within different topic levels, where topic modelling followed by dimensionality reduction (to cluster question texts with similar semantics) is a promising approach.

An important finding from the work to date is the apparently significant, though clearly noticeable difference, contextual metadata makes to the level of prediction. Further evaluation and quantification of this will be an important outcome for future work, as it could have a large impact on both the size and complexity of and the time, effort and cost implied if trying to construct training datasets to support other ontologies.

Another subsequent planned step (beyond the objectives of this work-package) is to investigate the questionnaire structure and its influence on classification performance. This is elaborated in the following sub-section.

#### Dependency modelling and Sequence Labelling

Given the nature of the task in hand, it is safe to assume that the questions within the same questionnaire follow a similar theme. Here, we are investigating whether there is an interdependence between the chain of questions within the same questionnaire. Specifically, to simplify the problem we first reduce this investigation to a sequence of two questions, i.e. each question and its followup.

To conduct this analysis, at both the super and sub level categories, we will simply look at the statistics that highlight this dependency.

What each of these charts show, is the frequency of each category following another category. What the charts show is that (varingly) for each category there is a dominant pre-category. This can serve as the basis of the depency that we would like to encode and add to our existing deep learning based model.

In the pie charts below, we see the distribution of the previous categories given each category.

As it can be seen apart from a few exceptions, in almost all categories, the preceding subcategory is identical. The same is true for lower level 96 categories. Here are the charts for the first 15.



Fig. 7. Previous category visualisation for the 16 top-level categories.



*Fig.8. Previous category visualisation for the second-level categories; showing a dominant previous category* 

In almost all subcategories, we had strong dependency between two consequent tags, where both were identical between 96 sub-categories. The charts above are a small selection of these charts, but the trend holds for other categories. There are a few exceptions in subcategories such as:



*Fig.9. Previous category visualisation for the second-level categories; with non-dominant previous categories.* 

Given the strong dependency that is evident here between two consequent labels, for future work we would like to design models where their architecture allows us to apply conditional training to learn **dependencies** among consequent labels.

We will investigate one of the following approaches that are common in sequence labelling problems in NLP:

- 1) Classical Approaches: mostly rule-based. where we manually devise heuristics and code them.
- 2) Classical Machine Learning Approaches: Models such as Conditional Random Field (CRF). It is a probabilistic graphical model that can be used to model sequential data such as labels of words in a sentence. The CRF model is able to capture the features of the current and previous labels in a sequence but it cannot understand the context of the forward labels.
- 3) Deep Learning Approaches:
  - a) Recurrent neural networks (RNN) are a class of deep neural networks that are powerful for modelling sequence data such as time series, or natural languageAs described in Keras/tensorflow guide for RNNS, "Schematically, a RNN layer uses a for loop to iterate over the timesteps of a sequence, while maintaining an internal state that encodes information about the timesteps it has seen so far."



This chain-like nature reveals that recurrent neural networks are intimately related to sequences. They are the natural architecture of neural networks to use for such data.

- b) Long short Term Memory (LSTM). We plan to investigate the use of bi-directional LSTMs because using a standard LSTM to make predictions will only take the "past" information in a sequence into account. Two different state-of-the-art LSTM architectures that can be applicable to our problem are:
  - i) Bidirectional LSTM-CRF: For sequence tagging with Bidirectional LSTM-CRT, please refer to this implementation in keras.
  - Bidirectional LSTM-CNNs: More details and <u>implementation in keras</u>.

## References

Colectica (2021). Colectica. Available at: https://www.colectica.com. Accessed 4 Oct. 2021.

CLOSER Discovery (2021). Available at: https://discovery.closer.ac.uk/. Accessed 30 March 2022.

De, S., Moss, H., Johnson, J., Li, J., Pereira, H., & Jabbari, S. (2022). Engineering a machine learning pipeline for automating metadata extraction from longitudinal survey questionnaires. IASSIST Quarterly, 46(1).

Devlin, J., et al. BERT: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018).

Goyal, A., Lamb, A., Zhang, Y., Zhang, S., Courville, A. & Bengio, Y. (2016), 'Professor forcing: A new algorithm for training recurrent networks', Advances in Neural Information Processing Systems pp. 4608–4616. URL: https://arxiv.org/abs/1610.09038v1

Howard, J, and Ruder, S., Universal language model fine-tuning for text classification (2018), arXiv preprint arXiv:1801.06146.

Kuprieiev, R. et al. (2021). DVC: Data Version Control - Git for Data & Models (2.3.0) DOI:10.5281/zenodo.4892897

Li, J. (2021). Python interface to the Colectica API (Version 1.0). Computer software. https://github.com/CLOSER-Cohorts/colectica\_api. Accessed 4 October 2021.

Merity, S., Keskar, N. S., and Socher, S. Regularizing and optimizing LSTM language models (2017), arXiv preprint arXiv:1708.02182.

UCL (2021). Research Data Storage Service (Research software repository). Available at https://www.ucl.ac.uk/isd/services/research-it/research-data-storage-service. Accessed 14 Oct. 2021.